Metamath Proof Explorer


Theorem mpondm0

Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017)

Ref Expression
Hypothesis mpondm0.f F=xX,yYC
Assertion mpondm0 ¬VXWYVFW=

Proof

Step Hyp Ref Expression
1 mpondm0.f F=xX,yYC
2 df-mpo xX,yYC=xyz|xXyYz=C
3 1 2 eqtri F=xyz|xXyYz=C
4 3 dmeqi domF=domxyz|xXyYz=C
5 dmoprabss domxyz|xXyYz=CX×Y
6 4 5 eqsstri domFX×Y
7 nssdmovg domFX×Y¬VXWYVFW=
8 6 7 mpan ¬VXWYVFW=