Metamath Proof Explorer


Definition df-mpo

Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)

Ref Expression
Assertion df-mpo xA,yBC=xyz|xAyBz=C

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 cA classA
2 vy setvary
3 cB classB
4 cC classC
5 0 2 1 3 4 cmpo classxA,yBC
6 vz setvarz
7 0 cv setvarx
8 7 1 wcel wffxA
9 2 cv setvary
10 9 3 wcel wffyB
11 8 10 wa wffxAyB
12 6 cv setvarz
13 12 4 wceq wffz=C
14 11 13 wa wffxAyBz=C
15 14 0 2 6 coprab classxyz|xAyBz=C
16 5 15 wceq wffxA,yBC=xyz|xAyBz=C