Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | vx | |- x | |
| 1 | cA | |- A | |
| 2 | vy | |- y | |
| 3 | cB | |- B | |
| 4 | cC | |- C | |
| 5 | 0 2 1 3 4 | cmpo | |- ( x e. A , y e. B |-> C ) | 
| 6 | vz | |- z | |
| 7 | 0 | cv | |- x | 
| 8 | 7 1 | wcel | |- x e. A | 
| 9 | 2 | cv | |- y | 
| 10 | 9 3 | wcel | |- y e. B | 
| 11 | 8 10 | wa | |- ( x e. A /\ y e. B ) | 
| 12 | 6 | cv | |- z | 
| 13 | 12 4 | wceq | |- z = C | 
| 14 | 11 13 | wa | |- ( ( x e. A /\ y e. B ) /\ z = C ) | 
| 15 | 14 0 2 6 | coprab |  |-  { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
| 16 | 5 15 | wceq |  |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |