Metamath Proof Explorer


Definition df-mpo

Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)

Ref Expression
Assertion df-mpo
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 vy
 |-  y
3 cB
 |-  B
4 cC
 |-  C
5 0 2 1 3 4 cmpo
 |-  ( x e. A , y e. B |-> C )
6 vz
 |-  z
7 0 cv
 |-  x
8 7 1 wcel
 |-  x e. A
9 2 cv
 |-  y
10 9 3 wcel
 |-  y e. B
11 8 10 wa
 |-  ( x e. A /\ y e. B )
12 6 cv
 |-  z
13 12 4 wceq
 |-  z = C
14 11 13 wa
 |-  ( ( x e. A /\ y e. B ) /\ z = C )
15 14 0 2 6 coprab
 |-  { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) }
16 5 15 wceq
 |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) }