Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x , y (in A X. B ) to C ( x , y ) ". An extension of df-mpt for two arguments. (Contributed by NM, 17-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | cA | |- A |
|
2 | vy | |- y |
|
3 | cB | |- B |
|
4 | cC | |- C |
|
5 | 0 2 1 3 4 | cmpo | |- ( x e. A , y e. B |-> C ) |
6 | vz | |- z |
|
7 | 0 | cv | |- x |
8 | 7 1 | wcel | |- x e. A |
9 | 2 | cv | |- y |
10 | 9 3 | wcel | |- y e. B |
11 | 8 10 | wa | |- ( x e. A /\ y e. B ) |
12 | 6 | cv | |- z |
13 | 12 4 | wceq | |- z = C |
14 | 11 13 | wa | |- ( ( x e. A /\ y e. B ) /\ z = C ) |
15 | 14 0 2 6 | coprab | |- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
16 | 5 15 | wceq | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |