| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpondm0.f |
|- F = ( x e. X , y e. Y |-> C ) |
| 2 |
|
df-mpo |
|- ( x e. X , y e. Y |-> C ) = { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
| 3 |
1 2
|
eqtri |
|- F = { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
| 4 |
3
|
dmeqi |
|- dom F = dom { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
| 5 |
|
dmoprabss |
|- dom { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } C_ ( X X. Y ) |
| 6 |
4 5
|
eqsstri |
|- dom F C_ ( X X. Y ) |
| 7 |
|
nssdmovg |
|- ( ( dom F C_ ( X X. Y ) /\ -. ( V e. X /\ W e. Y ) ) -> ( V F W ) = (/) ) |
| 8 |
6 7
|
mpan |
|- ( -. ( V e. X /\ W e. Y ) -> ( V F W ) = (/) ) |