Metamath Proof Explorer


Theorem brtpid2

Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016)

Ref Expression
Assertion brtpid2 ACABDB

Proof

Step Hyp Ref Expression
1 opex ABV
2 1 tpid2 ABCABD
3 df-br ACABDBABCABD
4 2 3 mpbir ACABDB