Metamath Proof Explorer
		
		
		
		Description:  Convert an operation commutative law to class notation.  (Contributed by NM, 26-Aug-1995)  (Revised by Mario Carneiro, 1-Jun-2013)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | caovcom.1 |  | 
					
						|  |  | caovcom.2 |  | 
					
						|  |  | caovcom.3 |  | 
				
					|  | Assertion | caovcom |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovcom.1 |  | 
						
							| 2 |  | caovcom.2 |  | 
						
							| 3 |  | caovcom.3 |  | 
						
							| 4 | 1 2 | pm3.2i |  | 
						
							| 5 | 3 | a1i |  | 
						
							| 6 | 5 | caovcomg |  | 
						
							| 7 | 1 4 6 | mp2an |  |