Metamath Proof Explorer


Theorem caovcom

Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 1-Jun-2013)

Ref Expression
Hypotheses caovcom.1 AV
caovcom.2 BV
caovcom.3 xFy=yFx
Assertion caovcom AFB=BFA

Proof

Step Hyp Ref Expression
1 caovcom.1 AV
2 caovcom.2 BV
3 caovcom.3 xFy=yFx
4 1 2 pm3.2i AVBV
5 3 a1i AVxVyVxFy=yFx
6 5 caovcomg AVAVBVAFB=BFA
7 1 4 6 mp2an AFB=BFA