Metamath Proof Explorer


Theorem cardeq0

Description: Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004)

Ref Expression
Assertion cardeq0 AVcardA=A=

Proof

Step Hyp Ref Expression
1 0ex V
2 carden AVVcardA=cardA
3 1 2 mpan2 AVcardA=cardA
4 card0 card=
5 4 eqeq2i cardA=cardcardA=
6 en0 AA=
7 3 5 6 3bitr3g AVcardA=A=