Metamath Proof Explorer


Theorem cardnum

Description: Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in _om plus the transfinite alephs. (Contributed by NM, 10-Sep-2004)

Ref Expression
Assertion cardnum x|cardx=x=ωran

Proof

Step Hyp Ref Expression
1 iscard3 cardx=xxωran
2 1 bicomi xωrancardx=x
3 2 eqabi ωran=x|cardx=x
4 3 eqcomi x|cardx=x=ωran