Metamath Proof Explorer


Theorem iscard3

Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion iscard3 cardA=AAωran

Proof

Step Hyp Ref Expression
1 cardon cardAOn
2 eleq1 cardA=AcardAOnAOn
3 1 2 mpbii cardA=AAOn
4 eloni AOnOrdA
5 3 4 syl cardA=AOrdA
6 ordom Ordω
7 ordtri2or OrdAOrdωAωωA
8 5 6 7 sylancl cardA=AAωωA
9 8 ord cardA=A¬AωωA
10 isinfcard ωAcardA=AAran
11 10 biimpi ωAcardA=AAran
12 11 expcom cardA=AωAAran
13 9 12 syld cardA=A¬AωAran
14 13 orrd cardA=AAωAran
15 cardnn AωcardA=A
16 10 bicomi AranωAcardA=A
17 16 simprbi ArancardA=A
18 15 17 jaoi AωArancardA=A
19 14 18 impbii cardA=AAωAran
20 elun AωranAωAran
21 19 20 bitr4i cardA=AAωran