Metamath Proof Explorer


Theorem iscard3

Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion iscard3
|- ( ( card ` A ) = A <-> A e. ( _om u. ran aleph ) )

Proof

Step Hyp Ref Expression
1 cardon
 |-  ( card ` A ) e. On
2 eleq1
 |-  ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) )
3 1 2 mpbii
 |-  ( ( card ` A ) = A -> A e. On )
4 eloni
 |-  ( A e. On -> Ord A )
5 3 4 syl
 |-  ( ( card ` A ) = A -> Ord A )
6 ordom
 |-  Ord _om
7 ordtri2or
 |-  ( ( Ord A /\ Ord _om ) -> ( A e. _om \/ _om C_ A ) )
8 5 6 7 sylancl
 |-  ( ( card ` A ) = A -> ( A e. _om \/ _om C_ A ) )
9 8 ord
 |-  ( ( card ` A ) = A -> ( -. A e. _om -> _om C_ A ) )
10 isinfcard
 |-  ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph )
11 10 biimpi
 |-  ( ( _om C_ A /\ ( card ` A ) = A ) -> A e. ran aleph )
12 11 expcom
 |-  ( ( card ` A ) = A -> ( _om C_ A -> A e. ran aleph ) )
13 9 12 syld
 |-  ( ( card ` A ) = A -> ( -. A e. _om -> A e. ran aleph ) )
14 13 orrd
 |-  ( ( card ` A ) = A -> ( A e. _om \/ A e. ran aleph ) )
15 cardnn
 |-  ( A e. _om -> ( card ` A ) = A )
16 10 bicomi
 |-  ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) )
17 16 simprbi
 |-  ( A e. ran aleph -> ( card ` A ) = A )
18 15 17 jaoi
 |-  ( ( A e. _om \/ A e. ran aleph ) -> ( card ` A ) = A )
19 14 18 impbii
 |-  ( ( card ` A ) = A <-> ( A e. _om \/ A e. ran aleph ) )
20 elun
 |-  ( A e. ( _om u. ran aleph ) <-> ( A e. _om \/ A e. ran aleph ) )
21 19 20 bitr4i
 |-  ( ( card ` A ) = A <-> A e. ( _om u. ran aleph ) )