| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnon | 
							 |-  ( A e. _om -> A e. On )  | 
						
						
							| 2 | 
							
								
							 | 
							onenon | 
							 |-  ( A e. On -> A e. dom card )  | 
						
						
							| 3 | 
							
								
							 | 
							cardid2 | 
							 |-  ( A e. dom card -> ( card ` A ) ~~ A )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							3syl | 
							 |-  ( A e. _om -> ( card ` A ) ~~ A )  | 
						
						
							| 5 | 
							
								
							 | 
							nnfi | 
							 |-  ( A e. _om -> A e. Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							ficardom | 
							 |-  ( A e. Fin -> ( card ` A ) e. _om )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( A e. _om -> ( card ` A ) e. _om )  | 
						
						
							| 8 | 
							
								
							 | 
							nneneq | 
							 |-  ( ( ( card ` A ) e. _om /\ A e. _om ) -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpancom | 
							 |-  ( A e. _om -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							mpbid | 
							 |-  ( A e. _om -> ( card ` A ) = A )  |