| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfi | 
							 |-  ( A e. Fin <-> E. x e. _om A ~~ x )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpi | 
							 |-  ( A e. Fin -> E. x e. _om A ~~ x )  | 
						
						
							| 3 | 
							
								
							 | 
							finnum | 
							 |-  ( A e. Fin -> A e. dom card )  | 
						
						
							| 4 | 
							
								
							 | 
							cardid2 | 
							 |-  ( A e. dom card -> ( card ` A ) ~~ A )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							 |-  ( A e. Fin -> ( card ` A ) ~~ A )  | 
						
						
							| 6 | 
							
								
							 | 
							entr | 
							 |-  ( ( ( card ` A ) ~~ A /\ A ~~ x ) -> ( card ` A ) ~~ x )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							 |-  ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) ~~ x )  | 
						
						
							| 8 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` A ) e. On  | 
						
						
							| 9 | 
							
								
							 | 
							onomeneq | 
							 |-  ( ( ( card ` A ) e. On /\ x e. _om ) -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpan | 
							 |-  ( x e. _om -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							imbitrid | 
							 |-  ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) = x ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1a | 
							 |-  ( x e. _om -> ( ( card ` A ) = x -> ( card ` A ) e. _om ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syld | 
							 |-  ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) e. _om ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							expcomd | 
							 |-  ( x e. _om -> ( A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexlimiv | 
							 |-  ( E. x e. _om A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							mpcom | 
							 |-  ( A e. Fin -> ( card ` A ) e. _om )  |