| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							endom | 
							 |-  ( A ~~ B -> A ~<_ B )  | 
						
						
							| 2 | 
							
								
							 | 
							nnfi | 
							 |-  ( B e. _om -> B e. Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							domfi | 
							 |-  ( ( B e. Fin /\ A ~<_ B ) -> A e. Fin )  | 
						
						
							| 4 | 
							
								
							 | 
							simpr | 
							 |-  ( ( B e. Fin /\ A ~<_ B ) -> A ~<_ B )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							jca | 
							 |-  ( ( B e. Fin /\ A ~<_ B ) -> ( A e. Fin /\ A ~<_ B ) )  | 
						
						
							| 6 | 
							
								
							 | 
							domnsymfi | 
							 |-  ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A )  | 
						
						
							| 7 | 
							
								6
							 | 
							ex | 
							 |-  ( A e. Fin -> ( A ~<_ B -> -. B ~< A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							php3 | 
							 |-  ( ( A e. Fin /\ B C. A ) -> B ~< A )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							 |-  ( A e. Fin -> ( B C. A -> B ~< A ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							nsyld | 
							 |-  ( A e. Fin -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( B e. _om /\ A e. Fin ) -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							expimpd | 
							 |-  ( B e. _om -> ( ( A e. Fin /\ A ~<_ B ) -> -. B C. A ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							syl5 | 
							 |-  ( B e. _om -> ( ( B e. Fin /\ A ~<_ B ) -> -. B C. A ) )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							mpand | 
							 |-  ( B e. _om -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eloni | 
							 |-  ( A e. On -> Ord A )  | 
						
						
							| 17 | 
							
								
							 | 
							nnord | 
							 |-  ( B e. _om -> Ord B )  | 
						
						
							| 18 | 
							
								
							 | 
							ordtri1 | 
							 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) )  | 
						
						
							| 19 | 
							
								
							 | 
							ordelpss | 
							 |-  ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ancoms | 
							 |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							notbid | 
							 |-  ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							bitrd | 
							 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) )  | 
						
						
							| 23 | 
							
								16 17 22
							 | 
							syl2an | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A C_ B <-> -. B C. A ) )  | 
						
						
							| 24 | 
							
								15 23
							 | 
							sylibrd | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> A C_ B ) )  | 
						
						
							| 25 | 
							
								1 24
							 | 
							syl5 | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A C_ B ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3impia | 
							 |-  ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A C_ B )  | 
						
						
							| 27 | 
							
								
							 | 
							ensymfib | 
							 |-  ( B e. Fin -> ( B ~~ A <-> A ~~ B ) )  | 
						
						
							| 28 | 
							
								2 27
							 | 
							syl | 
							 |-  ( B e. _om -> ( B ~~ A <-> A ~~ B ) )  | 
						
						
							| 29 | 
							
								
							 | 
							endom | 
							 |-  ( B ~~ A -> B ~<_ A )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							biimtrrdi | 
							 |-  ( B e. _om -> ( A ~~ B -> B ~<_ A ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							imp | 
							 |-  ( ( B e. _om /\ A ~~ B ) -> B ~<_ A )  | 
						
						
							| 32 | 
							
								31
							 | 
							3adant1 | 
							 |-  ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B ~<_ A )  | 
						
						
							| 33 | 
							
								
							 | 
							nndomog | 
							 |-  ( ( B e. _om /\ A e. On ) -> ( B ~<_ A <-> B C_ A ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ancoms | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( B ~<_ A <-> B C_ A ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							biimp3a | 
							 |-  ( ( A e. On /\ B e. _om /\ B ~<_ A ) -> B C_ A )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							syld3an3 | 
							 |-  ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B C_ A )  | 
						
						
							| 37 | 
							
								26 36
							 | 
							eqssd | 
							 |-  ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A = B )  | 
						
						
							| 38 | 
							
								37
							 | 
							3expia | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A = B ) )  | 
						
						
							| 39 | 
							
								
							 | 
							enrefnn | 
							 |-  ( B e. _om -> B ~~ B )  | 
						
						
							| 40 | 
							
								
							 | 
							breq1 | 
							 |-  ( A = B -> ( A ~~ B <-> B ~~ B ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl5ibrcom | 
							 |-  ( B e. _om -> ( A = B -> A ~~ B ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A = B -> A ~~ B ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							impbid | 
							 |-  ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) )  |