| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfi | 
							 |-  ( A e. Fin <-> E. x e. _om A ~~ x )  | 
						
						
							| 2 | 
							
								
							 | 
							onomeneq | 
							 |-  ( ( A e. On /\ x e. _om ) -> ( A ~~ x <-> A = x ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1a | 
							 |-  ( x e. _om -> ( A = x -> A e. _om ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( A e. On /\ x e. _om ) -> ( A = x -> A e. _om ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							sylbid | 
							 |-  ( ( A e. On /\ x e. _om ) -> ( A ~~ x -> A e. _om ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rexlimdva | 
							 |-  ( A e. On -> ( E. x e. _om A ~~ x -> A e. _om ) )  | 
						
						
							| 7 | 
							
								
							 | 
							enrefnn | 
							 |-  ( A e. _om -> A ~~ A )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							 |-  ( x = A -> ( A ~~ x <-> A ~~ A ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspcev | 
							 |-  ( ( A e. _om /\ A ~~ A ) -> E. x e. _om A ~~ x )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mpdan | 
							 |-  ( A e. _om -> E. x e. _om A ~~ x )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							impbid1 | 
							 |-  ( A e. On -> ( E. x e. _om A ~~ x <-> A e. _om ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							bitrid | 
							 |-  ( A e. On -> ( A e. Fin <-> A e. _om ) )  |