Metamath Proof Explorer


Theorem onfin

Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of TakeutiZaring p. 92. (Contributed by NM, 26-Jul-2004)

Ref Expression
Assertion onfin ( 𝐴 ∈ On → ( 𝐴 ∈ Fin ↔ 𝐴 ∈ ω ) )

Proof

Step Hyp Ref Expression
1 isfi ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )
2 onomeneq ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴𝑥𝐴 = 𝑥 ) )
3 eleq1a ( 𝑥 ∈ ω → ( 𝐴 = 𝑥𝐴 ∈ ω ) )
4 3 adantl ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 = 𝑥𝐴 ∈ ω ) )
5 2 4 sylbid ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴𝑥𝐴 ∈ ω ) )
6 5 rexlimdva ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω ) )
7 enrefg ( 𝐴 ∈ ω → 𝐴𝐴 )
8 breq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥𝐴𝐴 ) )
9 8 rspcev ( ( 𝐴 ∈ ω ∧ 𝐴𝐴 ) → ∃ 𝑥 ∈ ω 𝐴𝑥 )
10 7 9 mpdan ( 𝐴 ∈ ω → ∃ 𝑥 ∈ ω 𝐴𝑥 )
11 6 10 impbid1 ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴𝑥𝐴 ∈ ω ) )
12 1 11 bitrid ( 𝐴 ∈ On → ( 𝐴 ∈ Fin ↔ 𝐴 ∈ ω ) )