| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfi | 
							⊢ ( 𝐴  ∈  Fin  ↔  ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥 )  | 
						
						
							| 2 | 
							
								
							 | 
							onomeneq | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  ω )  →  ( 𝐴  ≈  𝑥  ↔  𝐴  =  𝑥 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eleq1a | 
							⊢ ( 𝑥  ∈  ω  →  ( 𝐴  =  𝑥  →  𝐴  ∈  ω ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  ω )  →  ( 𝐴  =  𝑥  →  𝐴  ∈  ω ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							sylbid | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  ω )  →  ( 𝐴  ≈  𝑥  →  𝐴  ∈  ω ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rexlimdva | 
							⊢ ( 𝐴  ∈  On  →  ( ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥  →  𝐴  ∈  ω ) )  | 
						
						
							| 7 | 
							
								
							 | 
							enrefnn | 
							⊢ ( 𝐴  ∈  ω  →  𝐴  ≈  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ≈  𝑥  ↔  𝐴  ≈  𝐴 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspcev | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ≈  𝐴 )  →  ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥 )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mpdan | 
							⊢ ( 𝐴  ∈  ω  →  ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥 )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							impbid1 | 
							⊢ ( 𝐴  ∈  On  →  ( ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥  ↔  𝐴  ∈  ω ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							bitrid | 
							⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  Fin  ↔  𝐴  ∈  ω ) )  |