Metamath Proof Explorer


Theorem onfin

Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of TakeutiZaring p. 92. (Contributed by NM, 26-Jul-2004)

Ref Expression
Assertion onfin A On A Fin A ω

Proof

Step Hyp Ref Expression
1 isfi A Fin x ω A x
2 onomeneq A On x ω A x A = x
3 eleq1a x ω A = x A ω
4 3 adantl A On x ω A = x A ω
5 2 4 sylbid A On x ω A x A ω
6 5 rexlimdva A On x ω A x A ω
7 enrefg A ω A A
8 breq2 x = A A x A A
9 8 rspcev A ω A A x ω A x
10 7 9 mpdan A ω x ω A x
11 6 10 impbid1 A On x ω A x A ω
12 1 11 bitrid A On A Fin A ω