Metamath Proof Explorer


Theorem onomeneq

Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004)

Ref Expression
Assertion onomeneq A On B ω A B A = B

Proof

Step Hyp Ref Expression
1 php5 B ω ¬ B suc B
2 1 ad2antlr A On B ω A B ¬ B suc B
3 enen1 A B A suc B B suc B
4 3 adantl A On B ω A B A suc B B suc B
5 2 4 mtbird A On B ω A B ¬ A suc B
6 peano2 B ω suc B ω
7 sssucid B suc B
8 ssdomg suc B ω B suc B B suc B
9 6 7 8 mpisyl B ω B suc B
10 endomtr A B B suc B A suc B
11 9 10 sylan2 A B B ω A suc B
12 11 ancoms B ω A B A suc B
13 12 a1d B ω A B ω A A suc B
14 13 adantll A On B ω A B ω A A suc B
15 ssel ω A B ω B A
16 15 com12 B ω ω A B A
17 16 adantr B ω A On ω A B A
18 eloni A On Ord A
19 ordelsuc B ω Ord A B A suc B A
20 18 19 sylan2 B ω A On B A suc B A
21 17 20 sylibd B ω A On ω A suc B A
22 ssdomg A On suc B A suc B A
23 22 adantl B ω A On suc B A suc B A
24 21 23 syld B ω A On ω A suc B A
25 24 ancoms A On B ω ω A suc B A
26 25 adantr A On B ω A B ω A suc B A
27 14 26 jcad A On B ω A B ω A A suc B suc B A
28 sbth A suc B suc B A A suc B
29 27 28 syl6 A On B ω A B ω A A suc B
30 5 29 mtod A On B ω A B ¬ ω A
31 ordom Ord ω
32 ordtri1 Ord ω Ord A ω A ¬ A ω
33 31 18 32 sylancr A On ω A ¬ A ω
34 33 con2bid A On A ω ¬ ω A
35 34 ad2antrr A On B ω A B A ω ¬ ω A
36 30 35 mpbird A On B ω A B A ω
37 simplr A On B ω A B B ω
38 36 37 jca A On B ω A B A ω B ω
39 nneneq A ω B ω A B A = B
40 39 biimpa A ω B ω A B A = B
41 38 40 sylancom A On B ω A B A = B
42 41 ex A On B ω A B A = B
43 eqeng A On A = B A B
44 43 adantr A On B ω A = B A B
45 42 44 impbid A On B ω A B A = B