Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfin2 | |- _om = ( On i^i Fin )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnon | |- ( x e. _om -> x e. On )  | 
						|
| 2 | onfin | |- ( x e. On -> ( x e. Fin <-> x e. _om ) )  | 
						|
| 3 | 2 | biimprcd | |- ( x e. _om -> ( x e. On -> x e. Fin ) )  | 
						
| 4 | 1 3 | jcai | |- ( x e. _om -> ( x e. On /\ x e. Fin ) )  | 
						
| 5 | 2 | biimpa | |- ( ( x e. On /\ x e. Fin ) -> x e. _om )  | 
						
| 6 | 4 5 | impbii | |- ( x e. _om <-> ( x e. On /\ x e. Fin ) )  | 
						
| 7 | elin | |- ( x e. ( On i^i Fin ) <-> ( x e. On /\ x e. Fin ) )  | 
						|
| 8 | 6 7 | bitr4i | |- ( x e. _om <-> x e. ( On i^i Fin ) )  | 
						
| 9 | 8 | eqriv | |- _om = ( On i^i Fin )  |