Description: Equality deduction from two subclass relationships. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 27-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqssd.1 | |- ( ph -> A C_ B ) |
|
eqssd.2 | |- ( ph -> B C_ A ) |
||
Assertion | eqssd | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | |- ( ph -> A C_ B ) |
|
2 | eqssd.2 | |- ( ph -> B C_ A ) |
|
3 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( ph -> A = B ) |