Metamath Proof Explorer


Theorem nndomog

Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023) Avoid ax-pow . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion nndomog
|- ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) )

Proof

Step Hyp Ref Expression
1 nnfi
 |-  ( A e. _om -> A e. Fin )
2 domnsymfi
 |-  ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A )
3 1 2 sylan
 |-  ( ( A e. _om /\ A ~<_ B ) -> -. B ~< A )
4 3 ex
 |-  ( A e. _om -> ( A ~<_ B -> -. B ~< A ) )
5 php2
 |-  ( ( A e. _om /\ B C. A ) -> B ~< A )
6 5 ex
 |-  ( A e. _om -> ( B C. A -> B ~< A ) )
7 4 6 nsyld
 |-  ( A e. _om -> ( A ~<_ B -> -. B C. A ) )
8 7 adantr
 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> -. B C. A ) )
9 nnord
 |-  ( A e. _om -> Ord A )
10 eloni
 |-  ( B e. On -> Ord B )
11 ordtri1
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) )
12 ordelpss
 |-  ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) )
13 12 ancoms
 |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) )
14 13 notbid
 |-  ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) )
15 11 14 bitrd
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) )
16 9 10 15 syl2an
 |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B <-> -. B C. A ) )
17 8 16 sylibrd
 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> A C_ B ) )
18 ssdomfi2
 |-  ( ( A e. Fin /\ B e. On /\ A C_ B ) -> A ~<_ B )
19 18 3expia
 |-  ( ( A e. Fin /\ B e. On ) -> ( A C_ B -> A ~<_ B ) )
20 1 19 sylan
 |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B -> A ~<_ B ) )
21 17 20 impbid
 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) )