Metamath Proof Explorer


Theorem nndomog

Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023)

Ref Expression
Assertion nndomog ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 php2 ( ( 𝐴 ∈ ω ∧ 𝐵𝐴 ) → 𝐵𝐴 )
2 1 ex ( 𝐴 ∈ ω → ( 𝐵𝐴𝐵𝐴 ) )
3 domnsym ( 𝐴𝐵 → ¬ 𝐵𝐴 )
4 2 3 nsyli ( 𝐴 ∈ ω → ( 𝐴𝐵 → ¬ 𝐵𝐴 ) )
5 4 adantr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → ¬ 𝐵𝐴 ) )
6 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
7 eloni ( 𝐵 ∈ On → Ord 𝐵 )
8 ordtri1 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
9 ordelpss ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵𝐴𝐵𝐴 ) )
10 9 ancoms ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵𝐴𝐵𝐴 ) )
11 10 notbid ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴 ) )
12 8 11 bitrd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
13 6 7 12 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
14 5 13 sylibrd ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
15 ssdomg ( 𝐵 ∈ On → ( 𝐴𝐵𝐴𝐵 ) )
16 15 adantl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
17 14 16 impbid ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )