Metamath Proof Explorer
Description: Cardinal ordering agrees with natural number ordering. Example 3 of
Enderton p. 146. (Contributed by NM, 17-Jun-1998)
|
|
Ref |
Expression |
|
Assertion |
nndomo |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
2 |
|
nndomog |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |