Metamath Proof Explorer
		
		
		
		Description:  Cardinal ordering agrees with natural number ordering.  Example 3 of
     Enderton p. 146.  (Contributed by NM, 17-Jun-1998)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					nndomo | 
					⊢  ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ≼  𝐵  ↔  𝐴  ⊆  𝐵 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnon | 
							⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  On )  | 
						
						
							| 2 | 
							
								
							 | 
							nndomog | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  On )  →  ( 𝐴  ≼  𝐵  ↔  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ≼  𝐵  ↔  𝐴  ⊆  𝐵 ) )  |