Metamath Proof Explorer


Theorem nndomo

Description: Cardinal ordering agrees with natural number ordering. Example 3 of Enderton p. 146. (Contributed by NM, 17-Jun-1998)

Ref Expression
Assertion nndomo ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
2 nndomog ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴𝐵 ) )
3 1 2 sylan2 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵𝐴𝐵 ) )