Description: Cardinal ordering agrees with natural number ordering. Example 3 of Enderton p. 146. (Contributed by NM, 17-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | nndomo | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
2 | nndomog | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |