Metamath Proof Explorer


Theorem nndomog

Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023)

Ref Expression
Assertion nndomog A ω B On A B A B

Proof

Step Hyp Ref Expression
1 php2 A ω B A B A
2 1 ex A ω B A B A
3 domnsym A B ¬ B A
4 2 3 nsyli A ω A B ¬ B A
5 4 adantr A ω B On A B ¬ B A
6 nnord A ω Ord A
7 eloni B On Ord B
8 ordtri1 Ord A Ord B A B ¬ B A
9 ordelpss Ord B Ord A B A B A
10 9 ancoms Ord A Ord B B A B A
11 10 notbid Ord A Ord B ¬ B A ¬ B A
12 8 11 bitrd Ord A Ord B A B ¬ B A
13 6 7 12 syl2an A ω B On A B ¬ B A
14 5 13 sylibrd A ω B On A B A B
15 ssdomg B On A B A B
16 15 adantl A ω B On A B A B
17 14 16 impbid A ω B On A B A B