Metamath Proof Explorer


Theorem nndomog

Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023) Avoid ax-pow . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion nndomog A ω B On A B A B

Proof

Step Hyp Ref Expression
1 nnfi A ω A Fin
2 domnsymfi A Fin A B ¬ B A
3 1 2 sylan A ω A B ¬ B A
4 3 ex A ω A B ¬ B A
5 php2 A ω B A B A
6 5 ex A ω B A B A
7 4 6 nsyld A ω A B ¬ B A
8 7 adantr A ω B On A B ¬ B A
9 nnord A ω Ord A
10 eloni B On Ord B
11 ordtri1 Ord A Ord B A B ¬ B A
12 ordelpss Ord B Ord A B A B A
13 12 ancoms Ord A Ord B B A B A
14 13 notbid Ord A Ord B ¬ B A ¬ B A
15 11 14 bitrd Ord A Ord B A B ¬ B A
16 9 10 15 syl2an A ω B On A B ¬ B A
17 8 16 sylibrd A ω B On A B A B
18 ssdomfi2 A Fin B On A B A B
19 18 3expia A Fin B On A B A B
20 1 19 sylan A ω B On A B A B
21 17 20 impbid A ω B On A B A B