Metamath Proof Explorer


Theorem domfi

Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006) (Revised by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion domfi
|- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin )

Proof

Step Hyp Ref Expression
1 domeng
 |-  ( A e. Fin -> ( B ~<_ A <-> E. x ( B ~~ x /\ x C_ A ) ) )
2 ssfi
 |-  ( ( A e. Fin /\ x C_ A ) -> x e. Fin )
3 2 adantrl
 |-  ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> x e. Fin )
4 enfii
 |-  ( ( x e. Fin /\ B ~~ x ) -> B e. Fin )
5 4 adantrr
 |-  ( ( x e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin )
6 3 5 sylancom
 |-  ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin )
7 6 ex
 |-  ( A e. Fin -> ( ( B ~~ x /\ x C_ A ) -> B e. Fin ) )
8 7 exlimdv
 |-  ( A e. Fin -> ( E. x ( B ~~ x /\ x C_ A ) -> B e. Fin ) )
9 1 8 sylbid
 |-  ( A e. Fin -> ( B ~<_ A -> B e. Fin ) )
10 9 imp
 |-  ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin )