| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							domeng | 
							 |-  ( A e. Fin -> ( B ~<_ A <-> E. x ( B ~~ x /\ x C_ A ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( A e. Fin /\ x C_ A ) -> x e. Fin )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantrl | 
							 |-  ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> x e. Fin )  | 
						
						
							| 4 | 
							
								
							 | 
							enfii | 
							 |-  ( ( x e. Fin /\ B ~~ x ) -> B e. Fin )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantrr | 
							 |-  ( ( x e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							sylancom | 
							 |-  ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin )  | 
						
						
							| 7 | 
							
								6
							 | 
							ex | 
							 |-  ( A e. Fin -> ( ( B ~~ x /\ x C_ A ) -> B e. Fin ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							exlimdv | 
							 |-  ( A e. Fin -> ( E. x ( B ~~ x /\ x C_ A ) -> B e. Fin ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							sylbid | 
							 |-  ( A e. Fin -> ( B ~<_ A -> B e. Fin ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imp | 
							 |-  ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin )  |