| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfi | 
							⊢ ( 𝐴  ∈  Fin  ↔  ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥 )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpi | 
							⊢ ( 𝐴  ∈  Fin  →  ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥 )  | 
						
						
							| 3 | 
							
								
							 | 
							finnum | 
							⊢ ( 𝐴  ∈  Fin  →  𝐴  ∈  dom  card )  | 
						
						
							| 4 | 
							
								
							 | 
							cardid2 | 
							⊢ ( 𝐴  ∈  dom  card  →  ( card ‘ 𝐴 )  ≈  𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ≈  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							entr | 
							⊢ ( ( ( card ‘ 𝐴 )  ≈  𝐴  ∧  𝐴  ≈  𝑥 )  →  ( card ‘ 𝐴 )  ≈  𝑥 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝑥 )  →  ( card ‘ 𝐴 )  ≈  𝑥 )  | 
						
						
							| 8 | 
							
								
							 | 
							cardon | 
							⊢ ( card ‘ 𝐴 )  ∈  On  | 
						
						
							| 9 | 
							
								
							 | 
							onomeneq | 
							⊢ ( ( ( card ‘ 𝐴 )  ∈  On  ∧  𝑥  ∈  ω )  →  ( ( card ‘ 𝐴 )  ≈  𝑥  ↔  ( card ‘ 𝐴 )  =  𝑥 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpan | 
							⊢ ( 𝑥  ∈  ω  →  ( ( card ‘ 𝐴 )  ≈  𝑥  ↔  ( card ‘ 𝐴 )  =  𝑥 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							imbitrid | 
							⊢ ( 𝑥  ∈  ω  →  ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝑥 )  →  ( card ‘ 𝐴 )  =  𝑥 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1a | 
							⊢ ( 𝑥  ∈  ω  →  ( ( card ‘ 𝐴 )  =  𝑥  →  ( card ‘ 𝐴 )  ∈  ω ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syld | 
							⊢ ( 𝑥  ∈  ω  →  ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  𝑥 )  →  ( card ‘ 𝐴 )  ∈  ω ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							expcomd | 
							⊢ ( 𝑥  ∈  ω  →  ( 𝐴  ≈  𝑥  →  ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexlimiv | 
							⊢ ( ∃ 𝑥  ∈  ω 𝐴  ≈  𝑥  →  ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω ) )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							mpcom | 
							⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω )  |