Metamath Proof Explorer


Theorem entr

Description: Transitivity of equinumerosity. Theorem 3 of Suppes p. 92. (Contributed by NM, 9-Jun-1998)

Ref Expression
Assertion entr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 ener ≈ Er V
2 1 a1i ( ⊤ → ≈ Er V )
3 2 ertr ( ⊤ → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )
4 3 mptru ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )