Metamath Proof Explorer


Theorem isinfcard

Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion isinfcard
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph )

Proof

Step Hyp Ref Expression
1 alephfnon
 |-  aleph Fn On
2 fvelrnb
 |-  ( aleph Fn On -> ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A ) )
3 1 2 ax-mp
 |-  ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A )
4 alephgeom
 |-  ( x e. On <-> _om C_ ( aleph ` x ) )
5 4 biimpi
 |-  ( x e. On -> _om C_ ( aleph ` x ) )
6 sseq2
 |-  ( A = ( aleph ` x ) -> ( _om C_ A <-> _om C_ ( aleph ` x ) ) )
7 5 6 syl5ibrcom
 |-  ( x e. On -> ( A = ( aleph ` x ) -> _om C_ A ) )
8 7 rexlimiv
 |-  ( E. x e. On A = ( aleph ` x ) -> _om C_ A )
9 8 pm4.71ri
 |-  ( E. x e. On A = ( aleph ` x ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) )
10 eqcom
 |-  ( ( aleph ` x ) = A <-> A = ( aleph ` x ) )
11 10 rexbii
 |-  ( E. x e. On ( aleph ` x ) = A <-> E. x e. On A = ( aleph ` x ) )
12 cardalephex
 |-  ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) )
13 12 pm5.32i
 |-  ( ( _om C_ A /\ ( card ` A ) = A ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) )
14 9 11 13 3bitr4i
 |-  ( E. x e. On ( aleph ` x ) = A <-> ( _om C_ A /\ ( card ` A ) = A ) )
15 3 14 bitr2i
 |-  ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph )