| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephfnon |
|- aleph Fn On |
| 2 |
|
fvelrnb |
|- ( aleph Fn On -> ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A ) ) |
| 3 |
1 2
|
ax-mp |
|- ( A e. ran aleph <-> E. x e. On ( aleph ` x ) = A ) |
| 4 |
|
alephgeom |
|- ( x e. On <-> _om C_ ( aleph ` x ) ) |
| 5 |
4
|
biimpi |
|- ( x e. On -> _om C_ ( aleph ` x ) ) |
| 6 |
|
sseq2 |
|- ( A = ( aleph ` x ) -> ( _om C_ A <-> _om C_ ( aleph ` x ) ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( x e. On -> ( A = ( aleph ` x ) -> _om C_ A ) ) |
| 8 |
7
|
rexlimiv |
|- ( E. x e. On A = ( aleph ` x ) -> _om C_ A ) |
| 9 |
8
|
pm4.71ri |
|- ( E. x e. On A = ( aleph ` x ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) ) |
| 10 |
|
eqcom |
|- ( ( aleph ` x ) = A <-> A = ( aleph ` x ) ) |
| 11 |
10
|
rexbii |
|- ( E. x e. On ( aleph ` x ) = A <-> E. x e. On A = ( aleph ` x ) ) |
| 12 |
|
cardalephex |
|- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
| 13 |
12
|
pm5.32i |
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> ( _om C_ A /\ E. x e. On A = ( aleph ` x ) ) ) |
| 14 |
9 11 13
|
3bitr4i |
|- ( E. x e. On ( aleph ` x ) = A <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 15 |
3 14
|
bitr2i |
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |