Metamath Proof Explorer


Theorem isinfcard

Description: Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003)

Ref Expression
Assertion isinfcard ωAcardA=AAran

Proof

Step Hyp Ref Expression
1 alephfnon FnOn
2 fvelrnb FnOnAranxOnx=A
3 1 2 ax-mp AranxOnx=A
4 alephgeom xOnωx
5 4 biimpi xOnωx
6 sseq2 A=xωAωx
7 5 6 syl5ibrcom xOnA=xωA
8 7 rexlimiv xOnA=xωA
9 8 pm4.71ri xOnA=xωAxOnA=x
10 eqcom x=AA=x
11 10 rexbii xOnx=AxOnA=x
12 cardalephex ωAcardA=AxOnA=x
13 12 pm5.32i ωAcardA=AωAxOnA=x
14 9 11 13 3bitr4i xOnx=AωAcardA=A
15 3 14 bitr2i ωAcardA=AAran