Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | alephgeom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph0 | |
|
2 | 0ss | |
|
3 | 0elon | |
|
4 | alephord3 | |
|
5 | 3 4 | mpan | |
6 | 2 5 | mpbii | |
7 | 1 6 | eqsstrrid | |
8 | peano1 | |
|
9 | ordom | |
|
10 | ord0 | |
|
11 | ordtri1 | |
|
12 | 9 10 11 | mp2an | |
13 | 12 | con2bii | |
14 | 8 13 | mpbi | |
15 | ndmfv | |
|
16 | 15 | sseq2d | |
17 | 14 16 | mtbiri | |
18 | 17 | con4i | |
19 | alephfnon | |
|
20 | 19 | fndmi | |
21 | 18 20 | eleqtrdi | |
22 | 7 21 | impbii | |