Metamath Proof Explorer


Theorem alephgeom

Description: Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephgeom AOnωA

Proof

Step Hyp Ref Expression
1 aleph0 =ω
2 0ss A
3 0elon On
4 alephord3 OnAOnAA
5 3 4 mpan AOnAA
6 2 5 mpbii AOnA
7 1 6 eqsstrrid AOnωA
8 peano1 ω
9 ordom Ordω
10 ord0 Ord
11 ordtri1 OrdωOrdω¬ω
12 9 10 11 mp2an ω¬ω
13 12 con2bii ω¬ω
14 8 13 mpbi ¬ω
15 ndmfv ¬AdomA=
16 15 sseq2d ¬AdomωAω
17 14 16 mtbiri ¬Adom¬ωA
18 17 con4i ωAAdom
19 alephfnon FnOn
20 19 fndmi dom=On
21 18 20 eleqtrdi ωAAOn
22 7 21 impbii AOnωA