Metamath Proof Explorer


Theorem ord0

Description: The empty set is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 11-May-1994)

Ref Expression
Assertion ord0 Ord

Proof

Step Hyp Ref Expression
1 tr0 Tr
2 we0 EWe
3 df-ord OrdTrEWe
4 1 2 3 mpbir2an Ord