Metamath Proof Explorer


Theorem alephislim

Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephislim AOnLimA

Proof

Step Hyp Ref Expression
1 alephgeom AOnωA
2 cardlim ωcardALimcardA
3 alephcard cardA=A
4 3 sseq2i ωcardAωA
5 limeq cardA=ALimcardALimA
6 3 5 ax-mp LimcardALimA
7 2 4 6 3bitr3i ωALimA
8 1 7 bitri AOnLimA