Metamath Proof Explorer


Theorem alephcard

Description: Every aleph is a cardinal number. Theorem 65 of Suppes p. 229. (Contributed by NM, 25-Oct-2003) (Revised by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephcard cardA=A

Proof

Step Hyp Ref Expression
1 2fveq3 x=cardx=card
2 fveq2 x=x=
3 1 2 eqeq12d x=cardx=xcard=
4 2fveq3 x=ycardx=cardy
5 fveq2 x=yx=y
6 4 5 eqeq12d x=ycardx=xcardy=y
7 2fveq3 x=sucycardx=cardsucy
8 fveq2 x=sucyx=sucy
9 7 8 eqeq12d x=sucycardx=xcardsucy=sucy
10 2fveq3 x=Acardx=cardA
11 fveq2 x=Ax=A
12 10 11 eqeq12d x=Acardx=xcardA=A
13 cardom cardω=ω
14 aleph0 =ω
15 14 fveq2i card=cardω
16 13 15 14 3eqtr4i card=
17 harcard cardhary=hary
18 alephsuc yOnsucy=hary
19 18 fveq2d yOncardsucy=cardhary
20 17 19 18 3eqtr4a yOncardsucy=sucy
21 20 a1d yOncardy=ycardsucy=sucy
22 cardiun xVyxcardy=ycardyxy=yxy
23 22 elv yxcardy=ycardyxy=yxy
24 23 adantl Limxyxcardy=ycardyxy=yxy
25 vex xV
26 alephlim xVLimxx=yxy
27 25 26 mpan Limxx=yxy
28 27 adantr Limxyxcardy=yx=yxy
29 28 fveq2d Limxyxcardy=ycardx=cardyxy
30 24 29 28 3eqtr4d Limxyxcardy=ycardx=x
31 30 ex Limxyxcardy=ycardx=x
32 3 6 9 12 16 21 31 tfinds AOncardA=A
33 card0 card=
34 alephfnon FnOn
35 34 fndmi dom=On
36 35 eleq2i AdomAOn
37 ndmfv ¬AdomA=
38 36 37 sylnbir ¬AOnA=
39 38 fveq2d ¬AOncardA=card
40 33 39 38 3eqtr4a ¬AOncardA=A
41 32 40 pm2.61i cardA=A