Description: Every aleph is a cardinal number. Theorem 65 of Suppes p. 229. (Contributed by NM, 25-Oct-2003) (Revised by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | alephcard | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 | |
|
2 | fveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 2fveq3 | |
|
5 | fveq2 | |
|
6 | 4 5 | eqeq12d | |
7 | 2fveq3 | |
|
8 | fveq2 | |
|
9 | 7 8 | eqeq12d | |
10 | 2fveq3 | |
|
11 | fveq2 | |
|
12 | 10 11 | eqeq12d | |
13 | cardom | |
|
14 | aleph0 | |
|
15 | 14 | fveq2i | |
16 | 13 15 14 | 3eqtr4i | |
17 | harcard | |
|
18 | alephsuc | |
|
19 | 18 | fveq2d | |
20 | 17 19 18 | 3eqtr4a | |
21 | 20 | a1d | |
22 | cardiun | |
|
23 | 22 | elv | |
24 | 23 | adantl | |
25 | vex | |
|
26 | alephlim | |
|
27 | 25 26 | mpan | |
28 | 27 | adantr | |
29 | 28 | fveq2d | |
30 | 24 29 28 | 3eqtr4d | |
31 | 30 | ex | |
32 | 3 6 9 12 16 21 31 | tfinds | |
33 | card0 | |
|
34 | alephfnon | |
|
35 | 34 | fndmi | |
36 | 35 | eleq2i | |
37 | ndmfv | |
|
38 | 36 37 | sylnbir | |
39 | 38 | fveq2d | |
40 | 33 39 38 | 3eqtr4a | |
41 | 32 40 | pm2.61i | |