Metamath Proof Explorer


Theorem cardom

Description: The set of natural numbers is a cardinal number. Theorem 18.11 of Monk1 p. 133. (Contributed by NM, 28-Oct-2003)

Ref Expression
Assertion cardom cardω=ω

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 oncardid ωOncardωω
3 1 2 ax-mp cardωω
4 nnsdom cardωωcardωω
5 sdomnen cardωω¬cardωω
6 4 5 syl cardωω¬cardωω
7 3 6 mt2 ¬cardωω
8 cardonle ωOncardωω
9 1 8 ax-mp cardωω
10 cardon cardωOn
11 10 1 onsseli cardωωcardωωcardω=ω
12 9 11 mpbi cardωωcardω=ω
13 7 12 mtpor cardω=ω