Metamath Proof Explorer


Theorem cardonle

Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of TakeutiZaring p. 85. (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion cardonle AOncardAA

Proof

Step Hyp Ref Expression
1 oncardval AOncardA=xOn|xA
2 enrefg AOnAA
3 breq1 x=AxAAA
4 3 intminss AOnAAxOn|xAA
5 2 4 mpdan AOnxOn|xAA
6 1 5 eqsstrd AOncardAA