Metamath Proof Explorer


Theorem aleph11

Description: The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion aleph11 AOnBOnA=BA=B

Proof

Step Hyp Ref Expression
1 alephord3 AOnBOnABAB
2 alephord3 BOnAOnBABA
3 2 ancoms AOnBOnBABA
4 1 3 anbi12d AOnBOnABBAABBA
5 eqss A=BABBA
6 eqss A=BABBA
7 4 5 6 3bitr4g AOnBOnA=BA=B
8 7 bicomd AOnBOnA=BA=B