Metamath Proof Explorer


Theorem alephf1

Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT . (Contributed by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephf1 :On1-1On

Proof

Step Hyp Ref Expression
1 alephfnon FnOn
2 alephon xOn
3 2 rgenw xOnxOn
4 ffnfv :OnOnFnOnxOnxOn
5 1 3 4 mpbir2an :OnOn
6 aleph11 xOnyOnx=yx=y
7 6 biimpd xOnyOnx=yx=y
8 7 rgen2 xOnyOnx=yx=y
9 dff13 :On1-1On:OnOnxOnyOnx=yx=y
10 5 8 9 mpbir2an :On1-1On