Metamath Proof Explorer


Theorem alephf1ALT

Description: Alternate proof of alephf1 . (Contributed by Mario Carneiro, 15-Mar-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion alephf1ALT :On1-1On

Proof

Step Hyp Ref Expression
1 alephfnon FnOn
2 alephon xOn
3 2 a1i xOnxOn
4 3 rgen xOnxOn
5 ffnfv :OnOnFnOnxOnxOn
6 1 4 5 mpbir2an :OnOn
7 alephsmo Smo
8 smo11 :OnOnSmo:On1-1On
9 6 7 8 mp2an :On1-1On