Metamath Proof Explorer


Theorem alephsmo

Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013)

Ref Expression
Assertion alephsmo Smo

Proof

Step Hyp Ref Expression
1 ssid OnOn
2 ordon OrdOn
3 alephord2i xOnyxyx
4 3 ralrimiv xOnyxyx
5 4 rgen xOnyxyx
6 alephfnon FnOn
7 alephsson ranOn
8 df-f :OnOnFnOnranOn
9 6 7 8 mpbir2an :OnOn
10 issmo2 :OnOnOnOnOrdOnxOnyxyxSmo
11 9 10 ax-mp OnOnOrdOnxOnyxyxSmo
12 1 2 5 11 mp3an Smo