Metamath Proof Explorer


Theorem smo11

Description: A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion smo11 F:ABSmoFF:A1-1B

Proof

Step Hyp Ref Expression
1 simpl F:ABSmoFF:AB
2 ffn F:ABFFnA
3 smodm2 FFnASmoFOrdA
4 ordelord OrdAzAOrdz
5 4 ex OrdAzAOrdz
6 3 5 syl FFnASmoFzAOrdz
7 ordelord OrdAwAOrdw
8 7 ex OrdAwAOrdw
9 3 8 syl FFnASmoFwAOrdw
10 6 9 anim12d FFnASmoFzAwAOrdzOrdw
11 ordtri3or OrdzOrdwzwz=wwz
12 simp1rr FFnASmoFzAwAzwFz=FwwA
13 smoel2 FFnASmoFxAyxFyFx
14 13 ralrimivva FFnASmoFxAyxFyFx
15 14 adantr FFnASmoFzAwAxAyxFyFx
16 15 3ad2ant1 FFnASmoFzAwAzwFz=FwxAyxFyFx
17 simp2 FFnASmoFzAwAzwFz=Fwzw
18 simp3 FFnASmoFzAwAzwFz=FwFz=Fw
19 fveq2 x=wFx=Fw
20 19 eleq2d x=wFyFxFyFw
21 20 raleqbi1dv x=wyxFyFxywFyFw
22 21 rspcv wAxAyxFyFxywFyFw
23 fveq2 y=zFy=Fz
24 23 eleq1d y=zFyFwFzFw
25 24 rspccv ywFyFwzwFzFw
26 22 25 syl6 wAxAyxFyFxzwFzFw
27 26 3imp wAxAyxFyFxzwFzFw
28 eleq1 Fz=FwFzFwFwFw
29 28 biimpac FzFwFz=FwFwFw
30 27 29 sylan wAxAyxFyFxzwFz=FwFwFw
31 12 16 17 18 30 syl31anc FFnASmoFzAwAzwFz=FwFwFw
32 smofvon2 SmoFFwOn
33 eloni FwOnOrdFw
34 ordirr OrdFw¬FwFw
35 32 33 34 3syl SmoF¬FwFw
36 35 ad2antlr FFnASmoFzAwA¬FwFw
37 36 3ad2ant1 FFnASmoFzAwAzwFz=Fw¬FwFw
38 31 37 pm2.21dd FFnASmoFzAwAzwFz=Fwz=w
39 38 3exp FFnASmoFzAwAzwFz=Fwz=w
40 ax-1 z=wFz=Fwz=w
41 40 a1i FFnASmoFzAwAz=wFz=Fwz=w
42 simp1rl FFnASmoFzAwAwzFz=FwzA
43 15 3ad2ant1 FFnASmoFzAwAwzFz=FwxAyxFyFx
44 simp2 FFnASmoFzAwAwzFz=Fwwz
45 simp3 FFnASmoFzAwAwzFz=FwFz=Fw
46 fveq2 x=zFx=Fz
47 46 eleq2d x=zFyFxFyFz
48 47 raleqbi1dv x=zyxFyFxyzFyFz
49 48 rspcv zAxAyxFyFxyzFyFz
50 fveq2 y=wFy=Fw
51 50 eleq1d y=wFyFzFwFz
52 51 rspccv yzFyFzwzFwFz
53 49 52 syl6 zAxAyxFyFxwzFwFz
54 53 3imp zAxAyxFyFxwzFwFz
55 eleq2 Fz=FwFwFzFwFw
56 55 biimpac FwFzFz=FwFwFw
57 54 56 sylan zAxAyxFyFxwzFz=FwFwFw
58 42 43 44 45 57 syl31anc FFnASmoFzAwAwzFz=FwFwFw
59 36 3ad2ant1 FFnASmoFzAwAwzFz=Fw¬FwFw
60 58 59 pm2.21dd FFnASmoFzAwAwzFz=Fwz=w
61 60 3exp FFnASmoFzAwAwzFz=Fwz=w
62 39 41 61 3jaod FFnASmoFzAwAzwz=wwzFz=Fwz=w
63 11 62 syl5 FFnASmoFzAwAOrdzOrdwFz=Fwz=w
64 63 ex FFnASmoFzAwAOrdzOrdwFz=Fwz=w
65 10 64 mpdd FFnASmoFzAwAFz=Fwz=w
66 65 ralrimivv FFnASmoFzAwAFz=Fwz=w
67 2 66 sylan F:ABSmoFzAwAFz=Fwz=w
68 dff13 F:A1-1BF:ABzAwAFz=Fwz=w
69 1 67 68 sylanbrc F:ABSmoFF:A1-1B