| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( F : A --> B /\ Smo F ) -> F : A --> B ) | 
						
							| 2 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 3 |  | smodm2 |  |-  ( ( F Fn A /\ Smo F ) -> Ord A ) | 
						
							| 4 |  | ordelord |  |-  ( ( Ord A /\ z e. A ) -> Ord z ) | 
						
							| 5 | 4 | ex |  |-  ( Ord A -> ( z e. A -> Ord z ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ( F Fn A /\ Smo F ) -> ( z e. A -> Ord z ) ) | 
						
							| 7 |  | ordelord |  |-  ( ( Ord A /\ w e. A ) -> Ord w ) | 
						
							| 8 | 7 | ex |  |-  ( Ord A -> ( w e. A -> Ord w ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( F Fn A /\ Smo F ) -> ( w e. A -> Ord w ) ) | 
						
							| 10 | 6 9 | anim12d |  |-  ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( Ord z /\ Ord w ) ) ) | 
						
							| 11 |  | ordtri3or |  |-  ( ( Ord z /\ Ord w ) -> ( z e. w \/ z = w \/ w e. z ) ) | 
						
							| 12 |  | simp1rr |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> w e. A ) | 
						
							| 13 |  | smoel2 |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x ) ) -> ( F ` y ) e. ( F ` x ) ) | 
						
							| 14 | 13 | ralrimivva |  |-  ( ( F Fn A /\ Smo F ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) | 
						
							| 17 |  | simp2 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z e. w ) | 
						
							| 18 |  | simp3 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) | 
						
							| 19 |  | fveq2 |  |-  ( x = w -> ( F ` x ) = ( F ` w ) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( x = w -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` w ) ) ) | 
						
							| 21 | 20 | raleqbi1dv |  |-  ( x = w -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. w ( F ` y ) e. ( F ` w ) ) ) | 
						
							| 22 | 21 | rspcv |  |-  ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. w ( F ` y ) e. ( F ` w ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( y = z -> ( F ` y ) = ( F ` z ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( y = z -> ( ( F ` y ) e. ( F ` w ) <-> ( F ` z ) e. ( F ` w ) ) ) | 
						
							| 25 | 24 | rspccv |  |-  ( A. y e. w ( F ` y ) e. ( F ` w ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) | 
						
							| 26 | 22 25 | syl6 |  |-  ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) ) | 
						
							| 27 | 26 | 3imp |  |-  ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) -> ( F ` z ) e. ( F ` w ) ) | 
						
							| 28 |  | eleq1 |  |-  ( ( F ` z ) = ( F ` w ) -> ( ( F ` z ) e. ( F ` w ) <-> ( F ` w ) e. ( F ` w ) ) ) | 
						
							| 29 | 28 | biimpac |  |-  ( ( ( F ` z ) e. ( F ` w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 30 | 27 29 | sylan |  |-  ( ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 31 | 12 16 17 18 30 | syl31anc |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 32 |  | smofvon2 |  |-  ( Smo F -> ( F ` w ) e. On ) | 
						
							| 33 |  | eloni |  |-  ( ( F ` w ) e. On -> Ord ( F ` w ) ) | 
						
							| 34 |  | ordirr |  |-  ( Ord ( F ` w ) -> -. ( F ` w ) e. ( F ` w ) ) | 
						
							| 35 | 32 33 34 | 3syl |  |-  ( Smo F -> -. ( F ` w ) e. ( F ` w ) ) | 
						
							| 36 | 35 | ad2antlr |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> -. ( F ` w ) e. ( F ` w ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) | 
						
							| 38 | 31 37 | pm2.21dd |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z = w ) | 
						
							| 39 | 38 | 3exp |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z e. w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 40 |  | ax-1 |  |-  ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) | 
						
							| 41 | 40 | a1i |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 42 |  | simp1rl |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z e. A ) | 
						
							| 43 | 15 | 3ad2ant1 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) | 
						
							| 44 |  | simp2 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> w e. z ) | 
						
							| 45 |  | simp3 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) | 
						
							| 46 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 47 | 46 | eleq2d |  |-  ( x = z -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` z ) ) ) | 
						
							| 48 | 47 | raleqbi1dv |  |-  ( x = z -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. z ( F ` y ) e. ( F ` z ) ) ) | 
						
							| 49 | 48 | rspcv |  |-  ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. z ( F ` y ) e. ( F ` z ) ) ) | 
						
							| 50 |  | fveq2 |  |-  ( y = w -> ( F ` y ) = ( F ` w ) ) | 
						
							| 51 | 50 | eleq1d |  |-  ( y = w -> ( ( F ` y ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` z ) ) ) | 
						
							| 52 | 51 | rspccv |  |-  ( A. y e. z ( F ` y ) e. ( F ` z ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) | 
						
							| 53 | 49 52 | syl6 |  |-  ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) ) | 
						
							| 54 | 53 | 3imp |  |-  ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) -> ( F ` w ) e. ( F ` z ) ) | 
						
							| 55 |  | eleq2 |  |-  ( ( F ` z ) = ( F ` w ) -> ( ( F ` w ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` w ) ) ) | 
						
							| 56 | 55 | biimpac |  |-  ( ( ( F ` w ) e. ( F ` z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 57 | 54 56 | sylan |  |-  ( ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 58 | 42 43 44 45 57 | syl31anc |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) | 
						
							| 59 | 36 | 3ad2ant1 |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) | 
						
							| 60 | 58 59 | pm2.21dd |  |-  ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z = w ) | 
						
							| 61 | 60 | 3exp |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( w e. z -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 62 | 39 41 61 | 3jaod |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( z e. w \/ z = w \/ w e. z ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 63 | 11 62 | syl5 |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 64 | 63 | ex |  |-  ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) ) | 
						
							| 65 | 10 64 | mpdd |  |-  ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 66 | 65 | ralrimivv |  |-  ( ( F Fn A /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) | 
						
							| 67 | 2 66 | sylan |  |-  ( ( F : A --> B /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) | 
						
							| 68 |  | dff13 |  |-  ( F : A -1-1-> B <-> ( F : A --> B /\ A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) | 
						
							| 69 | 1 67 68 | sylanbrc |  |-  ( ( F : A --> B /\ Smo F ) -> F : A -1-1-> B ) |