| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 2 |
1
|
eleq2d |
|- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
| 3 |
2
|
anbi1d |
|- ( F Fn A -> ( ( B e. dom F /\ C e. B ) <-> ( B e. A /\ C e. B ) ) ) |
| 4 |
3
|
biimprd |
|- ( F Fn A -> ( ( B e. A /\ C e. B ) -> ( B e. dom F /\ C e. B ) ) ) |
| 5 |
|
smoel |
|- ( ( Smo F /\ B e. dom F /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) |
| 6 |
5
|
3expib |
|- ( Smo F -> ( ( B e. dom F /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) ) |
| 7 |
4 6
|
sylan9 |
|- ( ( F Fn A /\ Smo F ) -> ( ( B e. A /\ C e. B ) -> ( F ` C ) e. ( F ` B ) ) ) |
| 8 |
7
|
imp |
|- ( ( ( F Fn A /\ Smo F ) /\ ( B e. A /\ C e. B ) ) -> ( F ` C ) e. ( F ` B ) ) |