Metamath Proof Explorer


Theorem smoel2

Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smoel2 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐵𝐴𝐶𝐵 ) ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
2 1 eleq2d ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ dom 𝐹𝐵𝐴 ) )
3 2 anbi1d ( 𝐹 Fn 𝐴 → ( ( 𝐵 ∈ dom 𝐹𝐶𝐵 ) ↔ ( 𝐵𝐴𝐶𝐵 ) ) )
4 3 biimprd ( 𝐹 Fn 𝐴 → ( ( 𝐵𝐴𝐶𝐵 ) → ( 𝐵 ∈ dom 𝐹𝐶𝐵 ) ) )
5 smoel ( ( Smo 𝐹𝐵 ∈ dom 𝐹𝐶𝐵 ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐵 ) )
6 5 3expib ( Smo 𝐹 → ( ( 𝐵 ∈ dom 𝐹𝐶𝐵 ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐵 ) ) )
7 4 6 sylan9 ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝐵𝐴𝐶𝐵 ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐵 ) ) )
8 7 imp ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐵𝐴𝐶𝐵 ) ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐵 ) )