Step |
Hyp |
Ref |
Expression |
1 |
|
dfsmo2 |
|- ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
2 |
1
|
simp1bi |
|- ( Smo F -> F : dom F --> On ) |
3 |
|
ffvelrn |
|- ( ( F : dom F --> On /\ B e. dom F ) -> ( F ` B ) e. On ) |
4 |
3
|
expcom |
|- ( B e. dom F -> ( F : dom F --> On -> ( F ` B ) e. On ) ) |
5 |
2 4
|
syl5 |
|- ( B e. dom F -> ( Smo F -> ( F ` B ) e. On ) ) |
6 |
|
ndmfv |
|- ( -. B e. dom F -> ( F ` B ) = (/) ) |
7 |
|
0elon |
|- (/) e. On |
8 |
6 7
|
eqeltrdi |
|- ( -. B e. dom F -> ( F ` B ) e. On ) |
9 |
8
|
a1d |
|- ( -. B e. dom F -> ( Smo F -> ( F ` B ) e. On ) ) |
10 |
5 9
|
pm2.61i |
|- ( Smo F -> ( F ` B ) e. On ) |