Metamath Proof Explorer


Theorem smofvon2

Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smofvon2
|- ( Smo F -> ( F ` B ) e. On )

Proof

Step Hyp Ref Expression
1 dfsmo2
 |-  ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) )
2 1 simp1bi
 |-  ( Smo F -> F : dom F --> On )
3 ffvelrn
 |-  ( ( F : dom F --> On /\ B e. dom F ) -> ( F ` B ) e. On )
4 3 expcom
 |-  ( B e. dom F -> ( F : dom F --> On -> ( F ` B ) e. On ) )
5 2 4 syl5
 |-  ( B e. dom F -> ( Smo F -> ( F ` B ) e. On ) )
6 ndmfv
 |-  ( -. B e. dom F -> ( F ` B ) = (/) )
7 0elon
 |-  (/) e. On
8 6 7 eqeltrdi
 |-  ( -. B e. dom F -> ( F ` B ) e. On )
9 8 a1d
 |-  ( -. B e. dom F -> ( Smo F -> ( F ` B ) e. On ) )
10 5 9 pm2.61i
 |-  ( Smo F -> ( F ` B ) e. On )