| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iordsmo.1 |
|- Ord A |
| 2 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 3 |
|
rnresi |
|- ran ( _I |` A ) = A |
| 4 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
| 5 |
1 4
|
ax-mp |
|- A C_ On |
| 6 |
3 5
|
eqsstri |
|- ran ( _I |` A ) C_ On |
| 7 |
|
df-f |
|- ( ( _I |` A ) : A --> On <-> ( ( _I |` A ) Fn A /\ ran ( _I |` A ) C_ On ) ) |
| 8 |
2 6 7
|
mpbir2an |
|- ( _I |` A ) : A --> On |
| 9 |
|
fvresi |
|- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
| 10 |
9
|
adantr |
|- ( ( x e. A /\ y e. A ) -> ( ( _I |` A ) ` x ) = x ) |
| 11 |
|
fvresi |
|- ( y e. A -> ( ( _I |` A ) ` y ) = y ) |
| 12 |
11
|
adantl |
|- ( ( x e. A /\ y e. A ) -> ( ( _I |` A ) ` y ) = y ) |
| 13 |
10 12
|
eleq12d |
|- ( ( x e. A /\ y e. A ) -> ( ( ( _I |` A ) ` x ) e. ( ( _I |` A ) ` y ) <-> x e. y ) ) |
| 14 |
13
|
biimprd |
|- ( ( x e. A /\ y e. A ) -> ( x e. y -> ( ( _I |` A ) ` x ) e. ( ( _I |` A ) ` y ) ) ) |
| 15 |
|
dmresi |
|- dom ( _I |` A ) = A |
| 16 |
8 1 14 15
|
issmo |
|- Smo ( _I |` A ) |