Metamath Proof Explorer


Theorem simp1rr

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp1rr
|- ( ( ( ch /\ ( ph /\ ps ) ) /\ th /\ ta ) -> ps )

Proof

Step Hyp Ref Expression
1 simprr
 |-  ( ( ch /\ ( ph /\ ps ) ) -> ps )
2 1 3ad2ant1
 |-  ( ( ( ch /\ ( ph /\ ps ) ) /\ th /\ ta ) -> ps )