Metamath Proof Explorer


Theorem simp1rr

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp1rr ( ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) ∧ 𝜃𝜏 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simprr ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) → 𝜓 )
2 1 3ad2ant1 ( ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) ∧ 𝜃𝜏 ) → 𝜓 )