| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
| 2 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
| 3 |
|
0elon |
⊢ ∅ ∈ On |
| 4 |
|
alephord3 |
⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ On → ( ∅ ⊆ 𝐴 ↔ ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 6 |
2 5
|
mpbii |
⊢ ( 𝐴 ∈ On → ( ℵ ‘ ∅ ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 7 |
1 6
|
eqsstrrid |
⊢ ( 𝐴 ∈ On → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 8 |
|
peano1 |
⊢ ∅ ∈ ω |
| 9 |
|
ordom |
⊢ Ord ω |
| 10 |
|
ord0 |
⊢ Ord ∅ |
| 11 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord ∅ ) → ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) ) |
| 12 |
9 10 11
|
mp2an |
⊢ ( ω ⊆ ∅ ↔ ¬ ∅ ∈ ω ) |
| 13 |
12
|
con2bii |
⊢ ( ∅ ∈ ω ↔ ¬ ω ⊆ ∅ ) |
| 14 |
8 13
|
mpbi |
⊢ ¬ ω ⊆ ∅ |
| 15 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 16 |
15
|
sseq2d |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ω ⊆ ( ℵ ‘ 𝐴 ) ↔ ω ⊆ ∅ ) ) |
| 17 |
14 16
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ dom ℵ → ¬ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 |
17
|
con4i |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ dom ℵ ) |
| 19 |
|
alephfnon |
⊢ ℵ Fn On |
| 20 |
19
|
fndmi |
⊢ dom ℵ = On |
| 21 |
18 20
|
eleqtrdi |
⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → 𝐴 ∈ On ) |
| 22 |
7 21
|
impbii |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |