Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsstrrid.1 | ⊢ 𝐵 = 𝐴 | |
| eqsstrrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | eqsstrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqsstrrid.1 | ⊢ 𝐵 = 𝐴 | |
| 2 | eqsstrrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | 1 | eqcomi | ⊢ 𝐴 = 𝐵 | 
| 4 | 3 2 | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |