Metamath Proof Explorer


Theorem eqsstrid

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses eqsstrid.1 𝐴 = 𝐵
eqsstrid.2 ( 𝜑𝐵𝐶 )
Assertion eqsstrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqsstrid.1 𝐴 = 𝐵
2 eqsstrid.2 ( 𝜑𝐵𝐶 )
3 1 sseq1i ( 𝐴𝐶𝐵𝐶 )
4 2 3 sylibr ( 𝜑𝐴𝐶 )