Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqsstrid.1 | ⊢ 𝐴 = 𝐵 | |
eqsstrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
Assertion | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.1 | ⊢ 𝐴 = 𝐵 | |
2 | eqsstrid.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
3 | 1 | sseq1i | ⊢ ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) |
4 | 2 3 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |