Metamath Proof Explorer
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
|
|
Ref |
Expression |
|
Hypotheses |
eqsstrid.1 |
|- A = B |
|
|
eqsstrid.2 |
|- ( ph -> B C_ C ) |
|
Assertion |
eqsstrid |
|- ( ph -> A C_ C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqsstrid.1 |
|- A = B |
2 |
|
eqsstrid.2 |
|- ( ph -> B C_ C ) |
3 |
1
|
sseq1i |
|- ( A C_ C <-> B C_ C ) |
4 |
2 3
|
sylibr |
|- ( ph -> A C_ C ) |